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Abstract. Based on the real-space correlated-basis-functions theory and the collective oscil- 
lation behaviour of the electron gas with effective Coulomb interaction, the many-body 
wavefuction is obtained for the quasi-two-dimensional electron system in the semiconductor 
inversion layer. The pair-correlation function and the correlation energy of the system have 
been calculated by the integro-differential method in this paper. A comparison with other 
previous theoretical results is also made. The new theoretical approach and its numerical 
results show that the pair-correlation functions are definitely positive and satisfy the nor- 
malisation condition. 

1. Introduction 

In the past two decades, many contributors became very interested in the area of 
two-dimensional ( 2 ~ )  and quasi-two-dimensional (Q2D) electron systems [ 1-81. The 
representative many-body theories for treating the correlations of such systems are, for 
example, the random-phase approximation (RPA), the Hubbard approximation (HA), 
the self-consistent STLS approximation [7] of Singwi et al, the Monte Carlo method [4], 
and the coupled-cluster method (CCM) [8]. From the calculations of these theories 
for the pair-correlation function, which is a very important key to the many-particle 
problem, we can find the following facts. 

(i) Most of the calculations are carried out in the momentum space, which is very 
similar to the three-dimensional (3D) system. The usual theoretical approaches are firstly 
focused on the calculation of the static structure factor, which is defined as 

where p a  is the fluctuation density operator. The pair-correlation function g(R) can 
then be obtained through the Fourier transformation 

where Jo(x)  is the zeroth-order Bessel function, and n is the electron density. 
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It is true that it is more convenient to obtain analytic expressions in momentum space 
than in the real space when we deal with the homogeneous electron system but, if we 
wish to carry out further numerical work, serious errors will be introduced into the 
calculation because of the cut-off approximation for the infinite integral in the momen- 
tum space. It is well known that the function 

h(R) = g(R) - 1 

which satisfies the normalisation condition 

-n 1 h(R) dR = 1 

(3) 

(4) 

is a rapidly converging short-range factor. In real space, we can use it as a strongly 
automatic cut-off factor naturally, but in the momentum space, its Fourier transform, 
S ( Q )  - 1, is, however, only a weakly converging function. 

(ii) The numerical results of the pair-correlation functions in many previous theories 
may appear to be negative values when the two electrons are very close in the case of a 
low electron density. Although many workers have tried to eliminate these imper- 
fections, they still have not found the mathematical proof to show that their theory will 
obtain definite positive values for the pair-correlation function irrespective of how close 
the two particles are and how low the electron density is. 

(iii) Few contributors have shown the oscillating behaviour of the pair-correlation 
function in the region of large R,  the distance between the two electrons. Careless use 
of these results will lose much physical information. 

Recently Feng and Sun [9,10] developed a new systematic many-particle theory, the 
real-space correlated-basis-functions (RSCBF) method, to treat the electron correlation 
for both inhomogeneous and homogeneous electron systems. The starting point of the 
theory is to calculate the pair-correlation function directly in real space, i.e. coordinate 
space. The theory was first used in the case of metal surfaces [9,10] and the 3D uniform 
metallic electron system [ll]. Later it was extended to the 2~ electron gas [12,13], and 
one-dimensional (ID) and quasi-one-dimensional ( Q ~ D )  electron systems [14, 151. By 
the integro-differential and variational method, the RSCBF theory can obtain the many- 
body wave function, one-particle profile (for the inhomogeneous system), the pair- 
correlation function and the correlation energy simultaneously. The remarkable advan- 
tage of the RSCBF theory is that the calculated pair-correlation functions are positive 
definite and satisfy the normalisation condition. The main approximation of the theory 
is the convolution approximation (CA) [16-181, although it leads to a very complicated 
form for the correlation energy equation and introduces errors into the real calculation. 
The previous numerical results seem very good for the long-range Coulomb interaction, 
but these studies cannot estimate the errors caused by CA and show why the CA is good 
enough for the calculation of the electron correlation energy and some other physical 
quantities. 

In this paper, we shall improve the previous RSCBF research work by presenting an 
exact but very simple variational correlation energy expression. As an application of the 
new theoretical approach, we have dealt with the Q ~ D  electron system of the inversion 
layer of the semiconductor. 
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2. Effective Hamiltonian of a QZD electron system and many-body wavefunction 

The Q ~ D  electron can be regarded as a bounded 3~ system; the electrons move freely in 
the x-y plane and are tightly bounded in the z direction as in the real case of the 
semiconductor inversion layer. 

To demonstrate the motion in the z direction for the semiconductor inversion layer, 
in [2,7,8] the form of the Fang-Howard variational wavefunction was adopted: 

~ ( z )  = (b3/2) i /2z  exp(-bz/2) ( 5 )  
where b is a variational parameter, which was chosen by minimising the toal single- 
particle energy [7] 

b = ( 4 8 ~ ~ e ~ m ~ / K ~ ~ f i ’ ) ( N ~ ~ ~ ,  + #hiinv). (6) 
Here hidepI = 7.6 x 1O1O cm-2 is the electron concentration in the depletion layer and N,,, 
is the electron concentration in the inversion layer. The consequent effective Coulomb 
interaction for the Q ~ D  electron then reads [7] 

I P l  

the inverse Fourier transform of which is 

ue f f<Q> = u(Q>F<Q) (8) 
where u ( Q )  = 2ne2/Kq is the Fourier transform obtained in the 2D electron system. The 
dielectric constant K is (K,, + Kins)/2, where K,, and Kin, are the dielectric constants in 
the semiconductor and insulator, respectively. For the inversion layer of silicon-metal- 
oxide, the introduced function F (Q)  is given by 

F ( Q )  = (1 + Kin,/Ksc)[A(1 + Q/b)-’ + &(I + Q/b)-2 + Q(1 + Q/b)-3] 

+ &(I - Kins/Ksc)(l + Q/b) -6  (9) 
where K,, = 11.8 and Kin, = 3.8 [7]. When F ( Q )  = 1, it reduces to the ideal case of the 
2~ electron system. 

The model Hamiltonian for the QZD system is written as 

Note that we have introduced a strength parameter A into the Hamiltonian. When A = 
0, it describes the non-interacting free-electron system; in the full strength limit A = 1, 
it just demonstrates the Q2D effective Coulomb interaction system. 

Define the density fluctuation operator as 

p Q  = xexp(- iQ.Ri) .  
i 

Equation (10) can be rewritten as 

where m* = 0.9me is the effective mass in the 2D plane. 
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According to the Bohm-Pines theory [19], for a suitable choice of a wavevector Q,, 
the density fluctuations for Q < Q, display essentially collective behaviour and oscillate 
at a frequency near to the collective plasma frequency and for Q > Q, they represent 
single-particle behaviour. Separating the part of Q < Q, in equation (12) and carrying 
out the canonical transformation [19], we obtain a ground-state wavefunction for the 
QZD system as follows: 

where D[q] denotes the Slater determinant combined with a complete set of single- 
electron orbital wavefunctions, and op( Q) is the collective oscillation plasma frequency: 

o p ( Q )  = vnQ2ueff(Q>/m* (14) 

which can be easily obtained by differentiating twice over the density fluctuation operator 
pa with respect to the time. Let 

4 Q )  = -2ueff(Q)e(Qc - Q>/fiop(Q) (15) 

where O(x)  denotes the step function: 

1 x > o  

x < 0. w> = [o 

Then the many-body wavefunction changes to 

Returning to the real space by taking the inverse Fourier transformation, we finally 
obtain the &dependent variational wavefunction in the Jastraw-Feenberg form often 
used in CBF theory: 

W A )  = F(A)D[VI (18) 

where 

and u(R) is called the correlation factor, which is the Fourier transform of function c( Q):  

and Q, in c ( Q )  can be determined by minimising the energy of Q2D electron system. 
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3. Equations for the variational energy and the pair-correlation function 

The I-dependent ground-state energy of the Q2D electron system is simply defined as 
the expection value of the Hamiltonian in the ground state: 

Substituting equation (10) for the Hamiltonian in equation (21), we find after dif- 
ferentiating and integrating over E( I )  with respect to A ,  that 

The first term in equation (22) is just the ground-state energy of a non-interacting QZD 
electron gas, which satisfies 

The second term is the so-called exchange-correlation energy in terms of the integral of 
the A-dependent pair-correlation functiong(R I A) with the effective interaction potential 

E( I )  = ( W A )  I fw) I W ) ) / ( W )  I W)). 

E(A) = E(0)  + E.&). 

TI W O ) )  = E@) I W O ) ) .  

(21) 

(22) 

(23) 

Exc(A) = 2nnNJo* A ’  dA’ R dR V,,(R)[g(RIA’) - 11. 

Ec(A) = 2nnN/0* A’ dA’ R dR V,,(R)[g(RIA’) - g(R10)I. 

(24) 

The correlation energy is then easily calculated by subtracting the exchange energy 
from it: 

(25) 

The pair-correlation function g(R I A) is defined as 

g(RlI)  = g(RI2 IA) = [N(N - l)/n’][l IY(I)(’  dR3 dR4 . . . dR,/ 

X 1 IY(A)I2 dRl  d R 2 . .  . dR,] (26) 

When A = 0, it describes the Hartree-Fock pair correlation function. Differentiating 
g(R I A) with respect to A ,  and again integrating over it, we can obtain a closed non-linear 
integral equation for the pair-correlation function in the CA: 
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Thus the pair-correlation function g(R I A )  can be solved from equations (27)-(33) by 
numerical iteration. 

4. Numerical results and discussion 

In order to compare with the previous theoretical results, we take all the relevant 
parameters as chosen in [7,8]. For the convenience of the numerical calculation, we 
introduce dimensionless variables into all the integral expressions presented in section 
3. R is in units of kF1 and Q in units of kF. For a Q2D electron system, the Fermi vector 
kF is of the form 

kF = f i / r s U z  (34) 
where a i  is the effective Bohr radius defined as 

a i  = Kii2/m*e2. (35) 
For the correlation energy, we let it be in units of effective Rydberg energy: 

1R* = m*e4/2Kh2. (36) 

g(R 10) = 1 - 0.5[2Jl(kFR)/kFR]* (37) 

In the Hartree-Fock approximation, the pair-correlation function is given by [12, 131 

where J l ( x )  is the first-order Bessel function. 
Using the above-introduced parameters and the Hartree-Fock pair-correlation func- 

tion, and choosing a trial variational parameter Q, in units of kF,  we then get the pair- 
correlation function after solving equation (27). By minimising the energy, we can finally 
determine the optimum parameter Qc(rs), the pair-correlation function g(R; r,), the 
correlation energy Ec(r,) and the many-body wavefunction simultaneously. 

Figure 1 shows the numerical results of the pair-correlation function for r, = 2,4,  8 
and 16. In order to display the quantum oscillation behaviour clearly, we have had g(R) 
enlarged for large R in the small rectangular inset in figure 1. 

In table 1, we present the results of the correlation energies for different densities. 
For comparison, we have also presented other previous typical theoretical results [7,8]. 
In figure 2, we plotted the pair-correlation function results for rs = 16 from different 
theories. 

From the numerical results of this paper, we find that the proved RSCBF approach for 
the Q ~ D  system has its own advantages. 

(i) It ensures that the pair-correlation function is definitely positive without the 
limitation of the distance between the two particles and of the densities of the electron 
system, which is considered below. As we know from equation (37), the correct results 
given by the Pauli principle should always have 

g(RI0) 3 1. (38) 
On the other hand, we know from equations (28)-(33) that the function B(R I A) is a 
convergent real number, since all the integral functions are definite convergent. Thus 
equation (27) ensures that g(R I A) will never be negative if the solution exists. 

(ii) The pair-correlation function satisfies the normalisation condition in equation 
(4) extremely well. The average errors of our results are less than This is because 
the CA still keeps the normalisation condition as shown in [18]. 
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Figure 1. The pair-correlation functions of a QZD 
system for different electron densities where R is 

Figure2. Comparison of the pair-correlation func- 
tions for rs = 16: -, present result; -.-, STLS 

Hartree-Fock approximation. The relevant par- 
ameters are the same as in figure 1. 

in units of k f ' .  approximation; -..- , HA; ---, RPA; . . * . ,  

Table 1. The exchange and correlation energies for a QZD electron system 
~ 

ExlIV (RYd*) EC/N(RYd*) 

r, (kF) results [7] results [7] [71 PI 
QC Present Jonson Present RPA H A  STLS CCM 

0.5 0.6 -1.379 -1.382 -0.069 -0.077 -0.061 -0.060 -0.0610 
1 0.8 -0.749 -0.751 -0.064 -0.079 -0.061 -0.060 -0.0591 
2 0.9 -0.405 -0.407 -0.051 -0.078 -0.060 -0.058 -0.0546 
4 1.1 -0.222 -0.222 -0.048 -0.076 -0.058 -0.049 -0.0492 
8 1.3 -0.122 -0.122 -0.040 -0.074 -0.057 -0.044 -0.0446 

16 1.6 -0.067 -0.067 -0.033 -0.070 -0.055 -0.034 -0.0393 

(iii) The oscillation behaviour of the pair-correlation function is described well. 
(iv) The expression for the correlation energy is simple and exact compared with the 

previous results. The simple formula can easily be extended to other dimensional 
electron systems. As adopted in [13], we can also use the complicated form with the CA 
to calculate the correlation energy. The results of the CA are very close to the present 
results only with errors of in the units of R * . This tells us that the CA is a good 
approximation for the long-range Coulomb interacting system. 

In passing we point out that the coupling parameter A ,  which describes the strength 
of the Coulomb interaction of the Q ~ D  electron system appearing in the many-body 
wavefunction in equations (18) and (19) is just the same as the strength parameter 
introduced in the Hamiltonian in equation (lo), the pair-correlation function in equation 
(27), and the correlation energy in equation (25). This important connection makes 
calculation much easier than in the previous CBF methods [ll, 13,151. To our knowledge 
this is the first time that this connection has been presented in the CBF approach. 
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